- Nuclear Theory - 77 -

Multiplicities and spectra of prompt fission neutrons up to $200~\mathrm{MeV}$

Vladimir M. Maslov¹, Nikolai V. Kornilov², Alexander B. Kagalenko², Natalia A. Tetereva¹

The energy distributions of prompt fission neutrons for E_n up to 200 MeV are of great importance for the accelerator-driven system technologies of sustainable energy production and radioactive waste transmutation. Model calculations were performed to interpret the prompt fission neutron spectra (PFNS) of 232 Th(n,f) and 238 U(n,f) reaction for $E_n \leq 20$ MeV recently [1]. Pre-fission ²³⁸U(n,xnf) reaction neutron spectra were calculated with a Hauser-Feshbach statistical model, ²³⁸U fission and (n,xn) reaction cross section data being fitted. The average energy of the pre-fission (n,nf) neutrons is shown to be rather dependent on E_n . For $E_n = 6$ - 9 MeV the lowering of PFNS average energy, which is due to the pre-fission (n,nf) neutrons, is reproduced. For $E_n = 13$ - 18 MeV a lowering of the measured PFNS average neutron energies was interpreted. Spectra of neutrons, evaporated from fission fragments, were approximated as a sum of two Watt' distributions. Recently energy distributions of prompt fission neutrons for incident neutron energies up to 200 MeV were reported [2], multiplicity data for ²³⁵U(n,f) and ²³⁸U(n,f) might appear soon [3]. We would extend our phenomenological approach up to 200 MeV. A self-consistent model on the basis of the energy balance with the incorporation of chance structure of fission would be employed [4]. It was verified below 20 MeV. The calculated values are compatible also with experimental data for $E_n \sim 20\text{-}50$ MeV for the ²³²Th, ²³⁵U, ²³⁸U target nuclides. We will explore the energy dependence of the pre- and post-fission neutron multiplicities. Realistic calculations of average energies of pre-fission neutrons would be carried out for E_n up to 200 MeV for the consistent neutron multiplicity analysis at high incident energies for (n,f) and (p,f) reactions. Importance of separate measurements for the ν_{pre} and ν_{post} for (n,f) and (p,f) reactions would be exemplified.

References

- [1] V.M. Maslov et al., EuroPhysics Journal A, 18 (2003) 93.
- [2] Ethvignot T. et al., Phys. Lett. B. (2003), in press.
- [3] Ethyignot T., private communication (2003).
- [4] Kornilov N.V., Kagalenko A.B., Maslov V.M., et al, preprint IPPE-2978, 2003.

¹ Joint Institute for Nuclear and Energy Research -Sosny, 220109, Minsk-Sosny, Belarus

² Institute of Physics and Power Engineering, Obninsk, Russia